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FOREWORD

This final report is submitted in accordance with "Scope of Work, Exhibit

C" for Contract NAS8-33979. The study was directed from the Guidance Sys-

tems Division (GSD) of The Bendix Corporation. The engineering manager at

this location was Mr. Joel Levinthal. Most of the analytical effort in

support of this project was provided by Dr. Frederick Chichester, who

wrote all sections of this report. The guidance of Dr. Henry B. Waites

and Mr. Stan Carroll of MSFC during the course of this study is gratefully

acknowledged.
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ABSTx&CI

The problem of applying modular attitude control to a rigid body - flexi-

ble suspension model of a flexible spacecraft with some state variables

inaccessible was addressed by developing a sequence of single axis models

and generating a series of reduced state linear observers of minimum order

to reconstruct those scalar state variables that were inaccessible. The

specific single axis models treated consisted of two, three and four rigid

bodies, respectively, interconnected by a flexible shaft passing through

the mass centers of the bodies. Reduced state linear observers of all

orders up to one less than the total number of scalar state variables were

generated for each of the three single axis models cited.
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SECTIOIN 1

1.0 INTRODUCTION

This report is submitted in compliance with the Scope of Work under con-

tract NAS8-33979. The period of performance covered by the contract is

from October 15, 1982 to September 30, 1983. The submission and approval

of this report constitute the successful completion of the "Exhibit C"

portion of the contract.

This report is a sequel to four others, two of them previously submitted

under a different contract number. The two prior reports, under a differ-

ent contract number, references (1-1) and (1-2), were submitted in October

1978 and September, 1979 and covered the periods from July 27, 1977 to

July 27, 1978 and from August 26, 1978 to August 26, 1979, respectively,

in compliance with "Exhibit A" of contract NAS8-32660.

Two prior final reports were prepared under contract NAS-33979. Reference

(1-3) was submitted on Karch 8, 1982 and covered the period from August

15, 1980 to October 15, 1981 in compliance with "Exhibit A" of the con-

tract. Reference (1-4) was ;ubmitted on March 18, 1983 and covered the

period from October 16, 1981 to October 31, 1982 in compliance with

"Exhibit B".

1.1 OEdECTIVE

The sections that follow summarize the effort expended on the Modular De-

sign Attitude Control System Study contract from November 1, 1982 to Sep-

tember 30, 1983. In prior applications of modular attitude control to

rigid body-flexible suspension approximations of the rotational dynamics

i of prototype flexible spacecraft, it was assumed that all of the scalar

state variables of the linearized models were accessible for measurement

and/or control. Actual spacecraft to be controlled almost never satisfy

such a broad condition. Therefore, the principal objective of the devel-

1
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opment of modular attitude control, completed September 30, 1983, was the

gene'ra'tion of a series of linear observers to support the application of

control to state variable models of flexible spacecraft for which one or

more state variables are inaccessible.

1.2 SCUPS

Study effort was concentrated in two main areas:

A. Development of a series of single axis state variable models of flexi-

ble spacecraft to be utilized in the comparison of different approach=

as to the development of modular attitude control systems. These mod=

els consisted of two, three or four rigid bodies serially connected by

a flexible suspension in such a way that motion was restricted to ro-

tation about a common axis through the mass centers of the bodies.

B. Generation of reduced state linear observers for each single axis mod-

el developed in Task A corresponding to various numbers and distribu-

tions of inaccessible state variables following the approaches pre-

sented in Luenberger (1=5), (1-6), (1-7), and $age (1=8).

1.3 GSNSSAL

This report is comprised of five sections. Sections 2 and 3 describe the

development of the two and three body single axis state variable models,

respectively , of a prototype flexible spacecraft and the generation of the

minimum order reduced state linear observers for the reconstruction of

inaccessible scalar state variables of these models. Section 4 portrays

the expansion of the three body single axis state variable model to a four

body model as an example of the effects of adding another mass to an ex-

isting model and describes the generation of the minimum order reduced

state linear observers for various numbers and distributions of inaccessi-

ble scalar state variables of the four body model. Section 5 lists a num-

ber of conclusions and recommendations drawn from veneration of linear

2



observers for the series of single axis state variable models described

above. References are listed at the end of each section.

The original RFQ requested that the International System of units (desig-

nated as SI) be used in the program and in any reporting. Torques, mo-

ments, angular momentum, moments of inertia and distances, however, are

stated in English units since this was the system of units used in pre-

senting all of the vehicle data in the RFQ.

3
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SECTION 2

2.0 DEVELOPMENT OF TWO BODY SINGLE AXIS MODEL AND ITS REDUCED

STATE LINEAR OBSERVERS

2.1 MODEL EQUATIONS

The state variable form of the two body single axis model of a flexible

spacecraft shown in Figure 2-1, assuming m of its four scalar state varia-

bles are accessible, may be expressed as follows.

x =Ax+Bu
	 (2-1)

y= Cx
	 (2-2)

V

where:

x = (x i , x 2 , x 3 , x 4 ) T = (6 1 , 5 1 , 8 2 , 6 2 ) T = state vector

T
T
1 

T 
2u = (u 1 , u 2 ) T =j I I I	 control vector

1	 2

T

9 = (yl' ••, ym)	
vector of measured or observed states (m - 1,2,3)

A = 4x4 state vector coefficient matrix

B = 4xr control vector coefficient matrix (r = 1 or 2)

C - mx4 measurement or observation vector coefficient matrix
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FIGURE 2-1

TWO BODY SINGLE AICiS MODEL
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a23	 I1	
(2-4)

1

kl

	

a41 = I2	
(2-5)

	

0	 0

	

1	 0
B	 (2-6)

	

U	 0

	

0	 1

The block diagram corresponding to this model is depicted in figure 2-2.

2.2 REDUCED ST®a"E LIMM OBSERVERS

2.2.1	 Introduction

The minimum order (number of scalar state variables) of a reduced state

linear observer required to reconstruct the 4-m inaccessible scalar states

of the two body single axis model represented by equations (2-1) through

(2-6) is p = 4-m. This reconstruction was accomplished for a given state

variable model in three main stages.

1) Synthesizing a linear observer of minimum required order (p).

2) Defining a synthesized variable corresponding to each of the inacces-

sible state variables of the given state variable model.

3) Expressing each synthesized variable as a function of the state varia-

bles of the reduced state observer and the accessible state variables

of the given state variable model.

Z r



State and Observation Equations:

x=Ax¢Bu

y= Cx

FIGURE 2--2

LINEARIZED STATE VARIABLE MODEL OF THE SYSTEK TO BE CONTROLLED
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The equations for the reduced state observers corresponding to the state

variable model of equations (2-1) through (2-6) are the following,

.
z =Dz+Eu+Gy
	

(2-7)

z - Tx
	

(2-8)

where:

D = pxp observer coefficient matrix (assumed diagonal)

E = TB = px4 observer control vector coefficient matrix 	
(2-9)

G = pxm observer vector of observed states coefficient matrix

T = px4 observer weighting matrix

The corresponding block diagram appears in Figure 2-3.

2.2.2 Observer Synthesis Equations

The equations for synthesizing the reduced state linear observers, based

on those appearing in Luenberger (2-1), (2-2) and ( 2-3) and Sage (2-4),

were written in the following form.

TA -DTF

F = GC,

For

dll

D 

0
d
P,p

(2-10)

(2-11)

( 2-12)

9
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Observer Equationsa

z = Dz +Gy+Eu

Since Gy = GCx = Fx,

z = Dz +Fx+Eu

FIGURE 2-3

LINEAR OBSERVER CORRESPONDING TO

LINEARIZED STATE VARIABLE MODEL OF FIGURE 2-2

C	
10



t 11	 t 12	 t 12	 t14

T =
	

(2-13)

tP,l t
p,2 tp,3 tp,4

f 11	 f 12	 f 13	 f14

F =
	

(2-14)
0	 o	 e	 e

fp,l f p ^ 2 fp,3 fp,4

and the form of the A matrix given in equation (2-3) the observer synthe-

sis equations reduce to the following general forms.

_ (Ai2 ) 1,1 (f il +d ii f i2 ) - (di2)2,1 
(f  
0+diif14)

ti2	
Dig

(2-15)

-(Al2 ) 1,2 (f il +dii f i2 ) + (Ai2)2,2(fi3+diif14)

t 1 =	 Al2

t il - d ii ti2 + fi2

i = 1, ..., P

t i3 = d ii t i4 + f14

11
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where

-(dii+a 23)
	

a41

Ail

a23
	 -(dii+a 41)

(2-16)

= dii2(dii2+a23+a41)

(Al2 ) i,j = Al2 without the elements of the ith row and jth

column,

Inaccessibility of a state variable in the model equations (2-1), (2-2) is

reflected by a corresponding null column in the observation matrix, C, and

a corresponding null column in the F matrix as implied by equation (2-11).

^	 For the generation of reduced order observers for the two body model the

F	 number of inaccessible state variables can be 1, 2 or 3.

2.3 FIRST ORDER OBSERVERS (p = 1)

A first order linear observer corresponds to inaccessiblity of one of the

four scalar state variables of the two body model. Therefore, the total

number of first order linear observers that can be synthesized for the two

body model is given by:

Ci = 4

The observer e quation then reduces to:

z =dz+Eu+Gy,	 (2-17)

12
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the F and T matrices reduce to:

F - [f l f 2 f3 f4]

T = ft, t 2 t3 t4]

(2-18)

and the observer synthesis equations, equation set (2 -15) and equation (2-

16), reduce to the following forms.

(A2 ) 1 ^ 1 (f 1 +df 2 ) - (A2)2 1(f3+df4)
t2 = -	 02

-(A2 ) 1,2 (f 1 +df 2 ) + (A2)2,2(f3+df4)
t4	

A2

t  = dt 2 + f2

(2-19)

t^ = dt 4 + f4

-(d2+a
23 )	 a41

D2 =	 2	 = d 2 (d 2+ a 23+ a4i)
a23	 -(d +a 41)

(A 2 ) i,j - A2 without the elements of the ith row and jth column

Since this case corresponds to inaccessibility of one state variable, one

of the fi (i = 1, ..., 4) = 0.

13
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Example

Suppose x4 , the scalar state representing the angular rate of body 2, is

inaccessible.

Then it is assumed that:

1 0 0 0

C	 0 1 0 0	 (2-21)

0 0 1 0

for which:

F = [ f 1 f2 f3 0 ]	 (2-22)

and T is of the form shown in equation (2-18).

From equations (2-10), (2-21) and (2-22),

C = [ f 1 f 2 f 3 1	 (2-23)

and from equations (2-4), (2-9) and (2-18)

E = I t 2 t4 1	 (2-24)

This equation corresponds to r = 2, control torques applied to both bod-

ies. For control torque applied only to body 1,

E = [ t 2 0 1	 (2-25)

and for control torque applied only to body 2,

E = I 0 t4 1
	

(2-26)

14
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The equations for determining the elements of the T matrix reduce to the

following forms.

(A2 ) 1,1 (f l +df2 ) - (A	 f2)2,13
t 2 =	

^2

t'

-(A2 ) 1 ^ 2 (f 1 +df 2
) + (A2)2,2f3

t 4 =	 A2

	

(2-27)	 1

t 1	 dt 2 + f2
r

V

t 3 = dt4

From equations (2-8) and (2-18),

Z = t 
I 
x 1 + t 2 x 2 + t 

3 
x 3 + t 4 x 

4
	 (2-28)

where x4 = the synthesized x4.

Solving for x4 yields:

3
x4 = t [z -iZ ti xi ]	 (2-29)

4

For inaccessibility of each of the remaining three scalar state variables

the equations for determining t i , set (2-19) and equations (2-8) and (2-

21) through (2-29) are appropriately modified.

15



2.4 SECOND ORDER OBSERVERS (p = 2)

The equation for a linear observer of order two corresponds to two of the

four scalar state variables being inaccessible. It is represented here e3

equation (2-7). The total number of second order observers that can be

synthesized for the two body model is given by:

r
C2 

2!2! 
6

If the observer coefficient matrix is assumed to be diagonal in this case,

it appears as follows:

D =	 [d11 0

(2-30)'	 0	
d22

?i

Since the observer is of order two,

? _ ( z l ,z 2 ) T	(2-31)

f11 f12 f 13 f14
F =

	

	 (2-32)

f21 f22 f23 f24

i
and

i

i.

t11 t 12 t 13 t14
T =

	

	 (2-33)

t21 t22 t23 t24

16
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The specific forms of the equations for generating the elements of T de-

pend upon which two of the scalar states are inaccessible. For each inac-

cessible state the corresponding columns in the C and F matrices are null.

Example

Corresponding to the angular position and rate, respectively, of body 2,

suppose that the scalar states x 3 and x4 are inaccessible. Then the equa-

tions for generating the elements of the T matrix assume the following

forms.

_ (Al2)1,1(fil+diifi2)
tit	

Al2

i=1, 2

-(Al2)1,2(fil+diifi2)

t14 =	 a12
(2-34)

t il = d ii t 2 + fi2

t i3 = diiti4

F

A

a.

r i

Bm

4
i nW

4

-(di
2 
i+a 23 )	a41	 2	 2

X12	
2	 dii(dii+a23+a41)

a23	 -(dii+a41) .

(Al2 ) i l j = Ai2 without elements of ith row and jth column

17
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From equation (2-8),

t 13 t14	
x3
	 ['l-tll'l-tl2'2

(2-36)

t23 t24 - x4	 z2-t 21 
x1-t 

22x2

where x3 and x4 are synthesized state variables.

 t14 _
Let o2	

I t I3

t 23	 t24	
t13 t24 -t 14 t23 * 0

(A2 ) i,j - 02 without elements of ith row and jth column

(A 2 ) 1,1 (z l -t 11x 1 -
t 12x 2) 

- (A2)2,1(z2-
t21x1-

t22x2)
x3 =	 (2-37)

"	 -( A2 ) 1,2 (2 1 -t 11 x l -t 12x2 ) + (A2 ) 2 ^ 2 (z 2-t 21x1-t22x2)
x4 =	 A	 (2-38)

For x3 and x4 inaccessible, it is assumed that: 	 li

p

i

j	 1	 0	 0	 0
C =	 (2-39)

0	 1	 0	 0

f ll f12 0
	 0

F =	 (2-40)

f21 f22 0
	 0

i

18



From F = GC,

Q

s

r.

G
 = [

'11 f12

f21 f22

From E = TB,

E = [ t 12 t 14

 t 22 t24 J

(2-41)

for r=2

(control torques applied to both bodies) 	 (2-42)

E

		

E = [

t l2t 	0 

J	
for control restricted to body 1 	 (2-43)

22	 J

 - L
0	 t14	 for control restricted to body 2 	 (2-44)

	

0	
t24

2,5 tHIRD ORDER OBSERVERS (p = 3)

The equation for the linear observer of order one less than the system's

dimension corresponds to three of the four scalar state variables being

inaccessible. It is represented here as equation (2-7). The total number

of third order linear observers that can be synthesized for the two body

model is given by:

4	 4!	 4
C3 = 3!2! = i

If the observer coefficient matrix is assumed to be diagonal in this case

It appears as follows,

19
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d ll	 0	 0

D	 0	
d22	

0	 (2-45)

0	 0	
d33

Since the observer is of order 3,

L = (z l , z2 , z3 ) T	(2-46)

f11	 f 12	 f 13	 f14

F
f21	 f 22	 f 23	 f 24 (2-47)

f31	 f 32	 f 33	 f34

and

tli	 t 12	 t13
	

t14

T =	 t 21	 t 22	 t23
	

t 24	 (2-48)

t 31	 t 32	 t33
	

t34

The specific forms of the equations for generating the elements of T 	 f

depend upon which three of the scalar states are inaccessible. For each

1 inaccessible state the corresponding columns in the C and F matrices are 	 j

null.
I	 .

Example

Suppose the scalar states, x 2 , x3 and x4 , representing the angular rate of

lbody 1 and the angular position and rate of body 2, are inaccessible.

	

e	
Then the equations for generating the elements of the T matrix assume the 	 j

following form since fit	 f 13	 f 14 = 0 for 1 = 1, 2, 3.	 l
1

20	 1

	

L"°	 I



2	 2
d ii (d ii+a23+a 41) (2-50)

21

i
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t it	 o
12

i=1, 2, 3

-(Al2)1,2fi1	 (2=49)t	 -	 _i4	
Al2

a
t l	 i.ti2

t 3 diit4

I
2-(di+a 23 )	a41

Au
_(d +a 41)

ii.

( °i2 ) j - &12 without elements of ith row and jth column

a23

t

From equation (2-8).

I

t12	 t 13	 t 14	 x2	

Z1_tiiRi_

1 22	 1 23	 1 24	 X3	 z2-121X1

t	 t,	 t	 x	 } Z -t
32	 :i3	 34	 4	 1_ 3	

x
31 1

where x2 , x3 and x4 are synthesized state variables.

ss

0

(2=51)



t12

Let A3 = I t22

t32

t13	 t14

t23	 t24	 0

t 33	 t34

where

(A3 ) i,j = ^3 without elements of ith row and jth column

iEl(-1)i+j(63)i i(z9-xl)
xj+l	 p	 j = 1, 2, 3

3

For x2 , x3 and x4 inaccessible, it is assumed that:

C =[1	 0	 0	 01

	f I 1 0	 0	 0

F =
	 f21 0	 0	 0

	

f31 0	 0	 0

From F = GC,

I
G	 [ ffI

21

f31

From E = TB,

(2-52)

(2-53)

(2-54)

(2-55)

	

[ t 12	 t 14 j	 for r = 2
E -	t 22	 t24	 (control torques applied to both bodies)

(2-56)

	

_ t 32	 t34

22
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a 23

2.6 REFERENCES

2-1 Luenberger, D.G., "Determining the state of a Linear System with

Observers of Low Dynamic Order", Ph.D. dissertion, Stanford

University, 1963.

2	 Luenberger, D.G., "Observers for Multivariable Systems", IEEE

Transactions on Automatic Control, Vol. AC-11, No. 2, April 1966, pp.

190-1"7.

2-3 Luenberger, D.G., "An Introduction to Observers", IEEE Transactions on

Automatic Control, Vol. AC-16, No. 6, December 1971, pp. 596-602.

2-4 Sage, A.P., Optimum Systems Control. Englewood Cliffs, N.J.:

Prentice-Hall, Inc. 1968, pp. 306-312.

1

r'



7
l'

SECTION 3

3.0 DEVELOPMENT OF THREE BODY SINGLE AXIS MODEL AND ITS REDUCED

STATE LINEAR OBSERVERS

3.1 MODEL EQUATIONS

The state variable form of the three body single axis model of a flexible

spacecraft shown in Figure 3-1 may be expressed as follows:

x=Ax +Bu
	

(3-1)

Y=Cx
	

(3-2)

where:

x = (X 
1' x 2 , x 3 , x 4 , x5, '6) T= ( 0 1 , 6 1 , C2 , 02 , 03 , 

63)T

= state vector

/ T	 T `T

	

u = (u1,...,ur)T=1 I1 ,	 it I	 (r = 1, 2 or 3)

	

1	 r/

Y = (y l ,...ym )
T

vector of measured or observed states

C = observation matrix of dimensions mx6, m = 1, 2,..., 5 (Minimum

dimension of reduced order observer required = 6-•m).

Partitioning of this model by rigid body results in the following forms

for its coefficient matrices.
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FIGURE 3-1

THREE BODY SINGLE AXIS MODEL

25



ORIGINAL PAGE M

OF POOR QUALITY

0 1	 I 0 0 I 0 0

-a 23 0 a23 0 0
i

0

0 0 0 1 0 0
A	 =

a41 0	 I a43 0 I	 a45 0

0
I

0 0 0 1	 0 1

— 0
i

0 a63 0

I

1	 -a63 0

k 
a23	

I1

k1

- 41	 I2

k2

a45	 I2

(3-3)

(3-4)

a43 = -(a41 +a 45)

k2
a63 

= I3

— 0 	 0 I 0

1 1 0 0

O	 I	 O	 I	 O
B =	 for r = 3 (control torques applied to all (3-5)

0	 I	 1	 I	 0
— — — —	 three bodies)
0 I 0	 0

0	 0	 I	 1

The block diagram corresponding to this model is shown in Figure 2-2.

26
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3.2 BEWMD STATE LINERS OBSEBYEBS

3.2.1 Introduction

For the three body single axis model represented by equations ( 3°1)
through ( 3=5), the minimum order of a reduced state linear observer re-
quired to generate the inaccessible states is p - 6=m (m = 1, 2, .., 5).
All of the reduced state linear observers for the three body model may be
written In the form represented by equations (2-7) and ( 2=8) where, in
this case, the observer coefficient matrix, D, is assumed to be diagonal

and of dimensions pxp: The corresponding observer weighting matrix is of
the following form.

....t16

T [ tIl

 tP'l	
tp.6

(3=6)

From equations (2_=9), (3-5) and (3=6).

	

t 12	 t14	 t16

E _	 I	 for r - 3 (control torques

	

_t p,2	 tp.4	 tP16	 applied to all 3 bodies).
( 3=7)

	f11 .
	 . .	 . f16

T

-f	 .	 .	 .	 . fp,l	 P,6

The corresponding observer block diagram appears in Figure 2=3.

Ki	27
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3,2,2 Observer Synthesis Equations

From Luenburger (3-1), (3-2), (3-3) and Sage (3-4) the equations for

synthesizing the reduced state linear observers for the three body single

axis model represented by equations (3-1) through (3-5) are given by

equations (2-10) and (2-11). With coefficient matrices of the forms

listed in 3.2.1 this set of observer sythesis equations reduces co the
i

following forms.

(-1)i+k(p1
3 ) 1,k (f i

+d iif14 ) + 
(-1)i+k+l(A

13 ) 2,k (f U+diif14)
t i,2k	 A,^

(-1)i+k+2(o )	 (f +d f )
+	 i3 3,k i5 ii i6

A13	 (3-9)

i = 1,2 .... ,n

k = 1,2,3

ti,2k-1 - dii ti,2k + fi,2k

where t ip are elements of the T matrix

and

2
I-(d ii +a 23 )	 a41	 0

i

^i3 -	 a23	 -(dii+a41+ai5)	 a63

i	
(3-10)

0	 a45	 -(dii+a 63)

-(d li 2 +823 )(Ai3 ) 1,1 -a23("i3)2,1

u^-
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where

(A13 ) i,j = A13 without the elements of the ith row and jth column

Inaccessibility of a scalar state variable in equation set (3-1), (3-2) is

reflected by a corresponding null column in the observation matrix, C and,

as implied by equation (2-11), in the F matrix for the generation of re-

duced order observers for the three body model the number of inaccessible

scalar states can be 1, 2, 3, 4 or 5.

3.3 FIRST ORDER OBSER70M (p = 1)

A first order observer is required when only one of the six scalar state

variables of the three body model is inaccessible. Hence, the total num-

ber of first order observers that can be generated for the three body mod-

el is given by:

C6=6

The first order form of the linear observer equation is:

z =dz+Eu+Gy
	

(3-11)

The F and T matrices associated with a first order observer for the three

body model then reduce to the following row forms,

F = (f l f2 f3 f4 f 5 f 6 ] T	(3-12)

T = ft, t 2 t3 t 4 t 5 t 6 l T	(3-13)

The observer synthesis equations are then given by equation set (3-9) and

equation (3-10) with i = 1,

29
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Since a first order observer corresponds to one of the scalar state varia-

bles being inaccessible, one of the f i (i=1, 2, 3, 4, 5, 6) = n,

Example

Suppose that the scalar state representing the angular rate of body 3, x6,

is inaccessible. Then f 6 = 0 and the observer synthesis equations reduce

to the following forms.

`

r

	

	 C-1)k+1(A3)1,k(f1+df2) + (-1)k+2(A3)2,k(f3+df4)
q	

t2k	 A3

(-1)
k+3 (A )39kf5

	

+	 k = 1, 2, 3	 (3-14)
3

t2k-1 = dt 2k + f 2	 k = 1, 2

t 5 = dt6

From equation (2-8) the synthesized scalar state, x 6 , is expressed in

terms of the observer variable, z 1 , and the accessible scalar state varia-

bles as follows.

5
xb = 1̂ (z - E tixi 1	 (3-15)

	

6	 i=1

In this case, it is assumed that:

10

C =	 15	 (3-16)

0

30
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where I 5 = 5X5 identity matrix

From F = GC,

G = [ f l f2 f3 f4 f5 ]

From E = TB,

E _ [ t2 t4 t6 ] for r = 3

(control torques applied to all three bodies)

E _ [ t2 t4 0 ] for control applied to bodies 1 and 2

(3-17)

(3-18)

(3-19)

E _ [ t 2 0	 0 ] for control applied to body 1
	

(3-20)

E _ [ t2 0	 t6 ] for control applied to bodies 1 and 3
	

(3-21)

3.4 OBSERVERS OF MERHEDIATE ORDER (p = 2, 3 or 4)

In the cases in which an intermediate number of the six scalar states of

the three body single axis model is inaccessible the minimum order of the

reduced state linear observer required to reconstruct these inaccessible

states is given by p. In each case the number of null columns in the

measurement or observation matrix, C, and the F matrix also is equal to

p. The general forms of the E, F and T matrices are given in equations

(3-6), (3-7) and (3-8) for p = 2, 3 or 4 where p represents the number of

inaccessible state variables of the model. If any two of the six scalar

states of the three body model are inaccessible, then the total number of

second order observers that can be generated for this model is given by:
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In general, if any p of the six scalar states are inaccessible, the number

of observers of order p that can be generated for the three body single

axis model is:

n _ C 6 _	 6!	
(3-23)

p	 p	 p!(6-p)!

With the assumption of a diagonal D matrix the observer synthesis equa-

tions are given by equation set (3-9) and equation (3-10) where i = 1,

P.

Example

Suppose the scalar states, x 5 and x6 , corresponding to the angular posi-

tion and rate, respectively, of body 3, are inaccessible. Then f 15 = f16
= 0 for i = 1, 2 and the observer synthesis equations reduce to the

following forms for the required second order observer.

(-1)i+k(A
i3)1,k(fil

t i,2k =

f 12 ) + (-1)i+k+l(A i3 ) 2,k 13 ii(f +d	
i4)

)

(3-24)

k = 1, 2, 3
	

i= 1, 2

ti,2k-1 = d ii ti,2k + fi,2k
	

k = 1, 2

Where 413 is expanded in equation (3-10) and (A13)i,j is A13 without the

elements of the ith tow and jth column.
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From equation ( 2-8) the synthesized scalar staces, x 5 and x6 , are ex-

pressed in terms of the observer variables, z l and z 2 , and the accessible

state variables as follows.

4	 4

(A2 ) 1,1 (z l -1=l t ij xj ) - (A2 ) 2,1 (z 2 i Z t2i xi )	 (3-25)
x5 =

	 ^2

4	 4
( A2 ) 1 ^ 2 ( zQ- l tij xj ) + (A2)2,2(z2-jElt2jxj)

x6 =	 A2	 (3-26)

where (A2 ) i,j = A2 without the elements of the ith row and jth column.

For x 5 and x6 inaccessible, it is assumed that:

'0 0
.

C = I
4

i

0 0

where I4 = 4x4 identity matrix

From F = GC,

If2l

11	 f 12	 f 13	 f14
G =

	 f 22	 f 23	 f24

(3-27)

(3-28)

33



From E = TB,

	

E = t 12	 t 14	 t16	
for r - 3 (control torques 	 (3-29)

	

t 22	 t 24	 t26	 applied to all three bodies)

	

E = t 12	 t14	 0	 for control applied to bodies 1 and 2. (3-30)

	

t 22	 t 24	 0

	

E - t 12	 0	 ti6	 for control applied to bodies 1 and 3. (3-31)

	

t 22	 0	 t26

	

t 12	 0	 0
E =	 for control restricted to body 1. 	 (3-32)

	

t 22	 0	 0

3.5 FIFTH ORDER OBSERVERS (p = 5)

An observer of at least order five is required when any five of the six

scalar state variables of the three body models are inaccessible. There-

fore, the total number of fifth order observers that can be generated for

the three body model is expressed by the following.

n5 = C5 = 6	 (3-33)

The observer synthesis equations are given in equation set (3-9) and equa-

tion (3-10) with i = 1, 2, ..., 5.

P9.
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Since a fifth order observer corresponds to five of the six scalar states

being inaccessible, fij = f2j = f3j = f4j = f5j - 0 for five of the six

values of the subscript, J.

Example

Suppose that the scalar states, x 2 , x3 , x4 , x5 and x6 , representing the

angular rate of body 1 and the angular displacements and rates of bodies 2

and 3 are inaccessible. Then f12 = f13 = f14 = fi5 = f16 = 0 for i = 1,

2, ..., 5 and the observer synthesis equations reduce to the following

forms.

(-1)i+k(A
i3)1,kfil

ti,2k	
0

(3-34)

i	 1, 2, .., 5

k= 1, 2, 3

t i,2k-1 = diiti,2k

where A13 is expanded in equation (3-10) and (A13)i,j is A13 without the

elements of the ith row and jth column.

The synthesized scalar state variables, x2 , x3 , x4 , x5 and x6 are ex-

pressed in terms of the observer scalar variables. z l , z2 ...z 5 , and the

acceasible state variables, using equation (2-8) as follows:

5

1E1 (-1)
i
+,(A5)i i(zi-xl)L

xj+1	 45 j = 1, 2, .., 5
	

(3-35)
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From E = TB,

t 12 t14	 t16

t 22 t26
E =	 t

32 t36

t 42 t46

t 52 t54	 t56

for r = 3 ( control torques	 (3-39)

applied to all three bodies),

36
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t 12	 t 13	 t14	 t15	 t16

t 22	 t26

A5 	 t32	 t36
t42	 o	 e	 e	

t46

t 52	 t 53	 t54	 t55	 t46

(3-36)

= t 12 (A 5 ) 1,1 - t 22 (A5 ) 2,1 + t 32 (A5 ) 3,1 - t42 (a5 ) 4,1 + t52(A5)5,1

where (A5)1, j = 45 without the elements of the ith row and jth column.

For only x 1 accessible, it is assumed that:

C= [ 1 0 0 0 0 0]	 ( 3-37)

From F	 GC,

rill

If21
G =	 f31

t41

^f51

(3-38)
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SECTION 4

4.0 DEVELOPMENT OF FOUR BODY SINGLE AXIS MODEL AND ITS REDUCED

STATE LINEAR OBSERVERS

	

4.1 M4ODEL EQUATIONS	
r

The state variable form of the four body single axis model of a flexible

spacecraft depicted in Figure 4-1 was written in the following form."

x = Ax + Bu	 (4-1)

y = Cx	 (4-2)

where:

x = (x 1 ,	 .	 .	 .	 .	 .	 ., x8)T

(e 1 , 6 1 , a 2 , a2 , a3 , a 3 , a4, 5
4)T

	

T-\T1	

Tr\T
u	 (u1 , . ., ur )	 I\ 1 	 I JI

	1 	 r
(r = 1, 2, 3 or 4)

i
	

Y _ ( y1 , . . ,	 ym)T
	

(m = 1, 2, 3, 4, 5, 6 or 7)

C = mx8 measurement or observation matrix

Partitioning of this model by rigid body yields the following forms for

its coefficient matrices:

38
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FIGURE 4-1

FOUR BIDDY SINGLE AXIS MODEL
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0	 1	 `	 0	 0	 f

1	 [o)	 [o)

-a23 	0	 1 a23 0	 I 1

0	 0 0 1	 I 0 0
I 1	 [0)

a41	 0	 I a43 0	 I a45 0

I ^

I
i^

0 0	 I 0 1 I	 0	 0

I	
[0) II

1 a63 0	 I a65 0 I	 a67	 0

0 0 0	 1

I

[0) ( 101

a85	 0	 -a85	 0 —

1 ^ '

(4-3)

0 0

[0)	 _
0 0

0	 0	 0	 0
1	 0	 0	 0

0	 0	 0	 0
0	 1	 0	 0

B = — — -- —	 — for r	 4	 (4-4)
0	 0	 0	 0
0	 0	 1	 0

0	 0	 0	 0
0	 `	 0	 0	 1
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k1

a23 = i1

k l k2

a41 I 2 ' a45	 I 2 '	 a43	 -(a41+a45)

(4-5)
k2 k3

a63 I 3 ' a67	 1 3 '	 a65 - 
-(a63+a 67)

k3
a85 =I4

The corresponding block diagram appears in Figure 2-2a

402 COMPARISON OF THREE BODY AND FOUR BODY NDDELS

4.2.1	 Introduction

g;

	

	 In order to evaluate the effects of adding another rotational mass to a

single axis model the three and four body models partitioned by rigid body

;t
were compared. More specifically the partitioned forms of the coefficient

matrices appearing in the state variable form of the model, equations (4-

1) and (4-2) were compared,

^	 I

4,2.2 Comparison of W Matrices of Three and Four Body Models 	 i

,i	
IThe three body and four body A matrices partitioned by rigid body were

I
presented in equations (3-3) and (4-3), respectively. The result of sup-	 II

erimposing the three body A matrix upon the four body A matrix appears as

follows.

i

41
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0 1 0	 0 I —
[01 [01

k1
I	

k1

_ 0 0
I 1 i	 I1

0 0 0	 1 0	 0

101
k 1 k1+k2 k2

0 I	 -	 0 0

I 2 I2 I2

A — — — — — — —

0	 0	 I 0	 1 0 0

101 II	 k2 k.2	
k3 k3

0 0 0I 3	I I 3	I3 4

0	 0 0 1

101 I	 [01 k

3

k

30 - 0
! I4 I4

a

r

5"

L

(4-6)

0 0

[01	 =
0 0

On the right hand side of the above equation the last two columns of the

matrix, which appear due to the addition of the fourth body, are parti-

tioned from the remainder of the matrix by solid lines. The addition of

the fourth body also results in the appearance of another term at the in-

tersection of the sixth row and fifth column. Careful review of the over-

all pattern of non-zero elements in this matrix parti.tioned by rigid body

implies that each addition of a rigid body would result in the addition of

corresponding elements with respect to the two rows and columns added.

42
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For example, addition of a fifth rigid body to the four body model would

have the following effects.
k4

1) Addition of the term,	 I4 , to the element at the intersection of the

eighth row and seventh column.

2) Addition of a ninth and tenth row and a ninth and tenth column con-

taining the following elements:

• "1" at the intersection of the ninth row and tenth column
..k4"

•

	

	 I 5 at the intersection of the eighth row and ninth column and at

the tenth row and seventh column.

Y "k	 ..

o	 —	 at the
I4

intersection of the tenth row and ninth column.

t
5

o	 "0" for each of the remaining elements.

k
cr

4.2.3	 Comparison of `°B° matrices of Three and Four Body Models

Generalized forms of the three body and four body B matrices were

superimposed for the case in which no control torques were applied to the

fourth body.	 The result has the following form.

k
0	 I 0	 !	 0

bll b 12	 b13

¢ 0 0	 0
+

b21 b 22	 b23
B =	 -- ----	 (4-7)

0 0	 0

b 31 b32	 b33

0 0	 0_
_ 0 0	 0

43
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It is evident that in this case the addition of the fourth body without

control actuators results in the addition of two null rows to the B ma-

trix.

4.2.4 Comparison of °C° Matrices of Three and Four Body Models

The specific form of the C matrix associated with the three body model

depends upon which of the six scalar state variables of the model is inac-

cessible. If the state variable, x 6 , representing the angular rate of

body 3 is inaccessible then the C matrix can be assumed to be of the form

given in equation (3-16). Partitioning this matrix by rigid body produces

the following form

1 2	( [0]	 0 0

C =

	

	 [0]	 IZ	 1 0 0	 (3-16)

----i--

0 0	 0 0 t 1 0

where:

Addition of a fourth body to the model for which neither its angular posi-

;.ion nor angular rate is accessible would result in the addition of two

null columns to the matrix on the right hand side of equation (3-16). For

each accessible scalar state variable associated with the fourth body an-

f'	 other row would be added to the C matrix with a "1" element in a position

r	 corresponding to that variable. Hence, if one of the two state variables

associated with the fourth body were accessible, addition of the body

would add one null column and a non-null row and column with a "1" at

their common intersection. If both of the state variables associated with

the fourth body are accessible, the addition of this body to the model

44
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adds two non-null columns and two non-null rows to the matrix on the right

hand side of equation (3-16). The superposition of the three and four

body C matrices partitioned by rigid body yields the following.

I 2 101
^	 I

101

I

101

101 I2 I
	 101 I	 [01

C =

00
-F

00 ^	 10 -1 00

_ 101 [01 i	 101 i	 I2

where:

(4-8)

I 2 = 0

]

[01	 = [ 0 0]
LO 0 0

4.3 REDUCED STATE LINEAR OBSERVERS

4.3.1 Introduction

The minimum order of a reduced state linear observer required to recon-

struct the 8-m inaccessible scalar state variables of the four body single

axis model of a flexible spacecraft represented by equations (4-1) through

(4-5) is p = 8-m where m = 1, 2, 3, 4, 5, 6 or 7. All of the reduced

state linear observers for this four body model may be written in the form

of equations (2-7) and (2-8) under the assumption that the observer coef-

ficient matrix, D, is diagonal and of dimensions pxp. The corresponding

observer weighting matrix is of the following form.

t 	 .	 .	 .	
t18

T =	 .	 .	 (4-9)

tP'1 .	 .	 .	 .	 .	
tP.8
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From equations (2-9), (4-4) and (4-9),

[ t 12	 t14	 t16	 t18
.	 .	 .	 .

E _	 .	 .	 .	 .

tp,2	 tp,4	 tp,6	 tp,8 I

[fII

	 .	 .	 .	 .

 f18
"i	

F -
	 .	 .

f	 .	 .	 .	 .	 .	 .	 f
P,1	 P,8 —

The corresponding observer block diagram appears in Figure 2-3.

(4-10)

(4-11)

4.3.2 Observer Synthesis Equations

From Luenberger (4-1), (4-2) and (4-3) and Sage (4-4) the equations for

synthesizing the reduced state linear observers for the four body single

axis model represented by equations (4-1) through (4-5) are given by

equations (2-10) and (2-11). With coefficient matrices of the form listed

in 4.3.1 this set of observer synthesis equations reduces to the

following.

(—I)i+k(A
14)1,k(fil+diif12) 

+ (-1)i+k+l(A
14)2,k(fi3+diif14)

ti,2k	
a41,

(4-12)

f i6 ) 
+ (-1)i+k+3(A 

14 ) 4,k 
(f 

i7 +d ii f 18 )

46

(-1)i+k+2(A
i4 ) 

k(f
+	 3,

i	 1, 2, . . ., p

k	 1, 2, 3, 4
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t1,2k-1 = dii t i,1,2k + fi,2k

where t ij are elements of the T matrix.

and

0 =
14

2
-(d +a )	 a

ii 23	 41
2

a	 -(d +a +a )
23	 ii 41 45

0	 a45

0	 0

0
	

0

a
	

0
63

2
-(dii+a63+a67)
	

a85

2
a	 -(d +a )
67
	 ii 85

(4-13)

_ -(d ii
+a

23 )(Ai4 ) l,l -a23(A14)2,1

(A14 ) i, j = A14 without the elements of the ith row and jth column.

Inaccessibility of a scalar state variable in the model equations (4-1),

(4-2) is reflected by a corresponding null column in the C and F matrices

as implied in equation (2-11). For the generation of reduced state

observers for the four body model the number of inaccessible state

variables, p, can be 1, 2, ?, 4, 5, 6 or 7.

4.4 FIRST ORDER OBSERVERS (p = 1)

An observer of order at least one is requred when only one of the eight

scalar state variables of the four body model is inaccessible. Therefore,

the total number of first order observers that can be generated for the

four body model is given by:
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C 
8 8

F

'j	 The first order form of the linear observer equation is as follows:

z =dz+Eu+Gy
	

(4-14)

The F and T matrices associated with a first order observer for the four

body model then reduce to the following row forms.

F = [ f1 f 2 .	 f8 ]	 (4-15)

T = [ t  t2	 .	 .	 . t8 1	 (4-16)

The observer synthesis equations are then of the form of equation set

( 4-12) and equation (4-13) with i = 1.

Since a first order observer corresponds to one of the scalar state varia-

bles being inaccessible, one of the f i (i = 1, 2, .., 8) = 0.

Example

Suppose the scalar state representing the angular rate of body 4, x8 , is

inaccessible. Then f 8 = 0 and the observer synthesis equations reduce to

the following forms.
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(-1)
k+l

(A4 ) l ^ k (f 1 +df 2 ) + ( -I)k+2(64)2,k(f3+df4)
t 2 =	 A4

(-1)i+k+3(A
4)3,k ( f+df6) + 

( -1)k+4(A
4)4,kf7

Ji4

k = 1, 2, 3, 4

0

(4-17)

t 2k-1 = dt2k + f2k	 k = 1, 2, 3

t 7 = dt8

2
-(d +a 23

) 	a41

a 23	 -(d2+a41+a45)

^4
0	 a45

0	 0

0	 0

a63	 0

-(d2+a6+a 67 )	a85

a67	 -(d2+a 85)

= -(d2+a
23 )(,14 ) 1,1 -a23("4)2,1
	 (4-18)
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where (A4 ) i, j = A4 without the elements of the ith ^row and jth column

from equation (2-8), the synthesized scalar state, x 8 , is expressed in

terms of the scalar observer variable, z, and the accessible scalar state

variables as follows.

1	 7
X8 

= 78 
1z —iEltixi] (4-19)

For x8 inaccessible, it is assumed that:

I0

(	 C = I7

r .
i

r

'	 where I 7 = 7X7 identity matrix,

From F	 GC,

G f1	 f2 f3 f4 f5 E6 f7

(4-20)

(4-21)

(	 From E = TS,

E	 r.2 t 4 t 6 t8
	 for r = 4 (control torques on &..11 4 bodies) (4-22)

1.
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(4-24)

i=1, 2

k 1, 2, 3,	 4

k = 1, 2, 3
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4.5 OBSERVERS OF INTERMEDIATE ORDER (p = 2, 3, 4, 5 or 6)

For those cases in which an intermediate number of the eight scalar states

of the four body single axis model is inaccessible, the minimum order of

the reduced state linear observer required to reconstruct these inaccessi-

ble states is given by p. In each case the number of null columns in the

measurement or observation matrix, C, and the F matrix also is equal to

p. The general forms of the E, F and T matrices are given in equations

(4-9), (4-10) and (4-11) for p = 2, 3, 4, 5 or 6 where p represents the

number of inaccessible scalar state variables of the model. If any p of

the eight scalar state variables of the four body models are inaccessible,

then the total number of observers of orderthat can bep	 generated for

this model is given by:

_ C8 _
	 8!

np	 P	 P!(8-P)!	
(4-23)

Example

Suppose the scalar states, x7 and x8 , which repre sent the angular position

and rate of body 4, are inaccessible. Then f17 = fi8 = 0 for i = 1, 2 and

the observer synthesis equations reduce to the following forms.

i

(-l)i+k(

t i,2k =

(f +d f ) + (-1)i+k+l(A 	 (f +d f )_lk it ii i2
	
14 ) 2,1c  i3 ii i4

(-0i+k+2(o )
	 (f +d f )+

	
14 3,k i5 ii i6

A14

t i,2k-1 = d ii t i,2k + fi,2k

^??	 ti,7 = diiti,8
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Where A14 is expanded in equation (4-13) and (A14 ) i, j is A14 without the

elements of the ith row and jth column.

From equation (2-8) the synthesized scalar states, x 7 and x8 , are

expressed in terms of the scalar observer variables, z and z 2 and the

accessible scalar state variables as follows.

2 (-1)
1+1 (D )	 (z - E t x )#	 i=1	 2 i,l i j =1 ij j	

(4-25)
7 =
	

42

x -_ 
i^i(-1)i

+1(A2)1.
2(zi j

Eltijxi)	
(4-26)

8	 A2

for

t17	 t18

A2 -	 3 t 17 t 28 - t 18 t 27 # 0
	 (4-27)

t 27	 t28

Where (A2 ) i,j - A2 without the elements of the ith row and jth column.

For x 7 and x8 inaccessible, it is assumed that:

10 0
1	 . .

C 16

1• .
10 0

(4-28)
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1

Since F GC,

f 11 f 12 f 13 f 14	 f 15 f 16
G = (4-29)

f 21 f22 f 23 f 24	 f 25 f26

From E = TB,

t14 t16 t18
E

[t 12
for r = 4 (control applied (4-30)

t 22 t24 t26 t28 to all four bodies
j

 t 14 t16 0
E _

[t 12
(for control torques applied (4-31)

t 22 t24 t26 0 to bodies 1, 2 and 3)

t12 t14
0 0

E _ (for control torques (4-32)

t 22 t24 0 0 applied to bodies 1 and 2)

t 12 0 0 0

E (for control torques (4-33)
t 22 0 0 0

applied to body 1)

406 SEVE M ORDER OBSERVERS (p = 7)

When any seven of the eight scalar state variables of the four body models

are inaccessible, a linear observer of at least order seven is required.

The total number of seventh order observers that can be generated for the

four body models may be expressed as follows.

C7	8	 (4-34)
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The observer synthesis equations are as presented in equation set (4-12)

and equation (4-13) with i = 1, 2, ..., 7. Since a seventh order observer

corresponds to seven of the scalar states being inaccessible, f lj = f 2 =

..	 f 7 = 0 for seven of the eight values of the subscript, J.

Example

Suppose only the scalar state variable representing the angular position

of body 1, x 1 , is accessible. Then the remaining scalar states, x2,

K3-.., x8 are inaccessible, fit = f13 = ... = fi8 = 0 for i = 1, 2, 3, 4,

5, 6 and 7 and the observer synthesis equations reduce to the following

forms.

(-1)i+k(A 14 ) 1  k 
f 
it

t	 ti,2k '	
^i4,	 k = 1, 2, 3, 4	 1 = 1, 2, ..., 7

i
(4-35)

t l,2k-1	 diiti,2k	 k - 1, 2, 3, 4

Where 4 i4 is expanded in equation (4-13) and (Ai4 ) i, j is 4i4 without the

elements in the ith row and jth column.

The synthesized scalar state variables, x 2 through x8 , are expressed in

terms of the observer variables, z i through z 7 , and the accessible state

variable, x l , by utilizing equation (2-8) in the following form.

7iZ1(-1)i+1(A7)i,k(zi-tilx1)

xk+1	 p	 k = 1, 2, ..., 7	 (4-36)
7
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t 12	 t 13	 t 14	 t 15	 t 16	 t 17	 t18
t22	 °	 ° 	 t28
t 32	 °	 °	 ° 	

t38

"7 t42 
	

t48

t 52	 °	 °	 °	 °	 °	 t58
t62 	

t68

t 72	 t 73	 t 74	 t 75	 t 76	 t 77	 t78

= t 12 (A 7 ) 1,1 - t 22 (A7 ) 2,1 + t 32 (A7 ) 3,1 - t42(A7)4,1

(4-37)

+ t
52 (A7 ) 5,1 - t 62 (A7 ) 6,1 + t72(A7)7,1

Where (A7 ) i,j = A7, without the elements of the ith row and jth column.

For only xl accessible, it is assumed that:

C= [ 1 0 0 0 0 0 0 0]	 (4-38)

From F = GC,

f I I

f21

f31

G = I f41

f51

f61

f71
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From E = TB,

ll

t 12	 t 14	 t 16	 t18

t 22	 t28

t 32	 t38

E t42	 t48

t 52	 °	 t58

t 62	 °	 °	 t68

t 72	 t 74	 t 76	 t78

for r = 4 (control torques	 (4-40)

applied to all four bodies)

e^

wo
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SECTION 5

500 CONCLUSIONS AND

During the period covered by this report three single axis models of a

prototype flexible spacecraft were written in state variable form and a

series of reduced state linear observers of various orders was generated

for each single axis model. Each of the single axis models developed con-

sisted of two or more bodies restricted to rotational motion about a com-

mon axis through their centers of mass. A distinct spring coefficient was

associated with each interconnection between the masses of each models

The resulting linear models were written in state variable form and later

partitioned by rigid body. This partitioning was done to facilitate the

expansion of the models by sequential addition of rigid bodies. The sin-

gle axis model development treated in this report commenced with a two bo-

dy model and progressed to three and four body models. Each of these mod-

els involved a transformation from the vector of scalar state variables to

a vector of measured or observed scalar states to represent the physical

situation in which one or more of the scalar states was inaccessible.

For each combination of single axis state variable model and inaccessible

scalar state(s) a reduced state linear observer was generated to recon-

struct those scalar states that were inaccessible. This was done because

the application of linear quadratic regulator (LQR) and closely related

time domain approaches to attitude control utilize all or nearly all of

the scalar states of the model of the spacecraft to be controlled.

r
5.1 CONCLUSIONS

The following conclusions were drawn mainly from the development of the

two body, three body and four body single axis models with inaccessible

scalar state variables of a prototype flexible spacecraft and the genera-

a^
	 tion of the corresponding linear observers of minimum order required to

reconstruct these inaccessible scalar states.
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1. Comparison of the coefficient matrices of single axis state variable

models in ascending order of numbers of rigid bodies revealed that

successive A, B and C matrices form patterns that permit easy exten-

sion to models involving larger numbers of rigid bodies. This compar-

ison was facilitated by partitioning each model by rigid body.

2. For the single axis state variable models treated in this report an r

body model has 2r scalar states consisting of angular position and

rate for each rigid body.

3. The minimum order required for a reduced state linear observer to re-

construct p inaccessible scalar states of a single axis state variable

model with a total of n scalar states is p where p - 1, 2, ..., n-1.

4. Under assumption of a diagonal D matrix in the reduced state linear

observer of minimum order to reconstruct the inaccessible scalar

states of a given single axis state variable model the observer syn-

thesis equations reduce to a relatively simple form depending upon the

number of rigid bodies involved.

5. Comparison of the observer synthesis equations for the minimum order

linear observers corresponding to single axis models involving succes-

sively higher numbers of rigid bodies revealed that the observer syn-

thesis equations could be expanded easily to accomodate the addition

of another rigid body to the single axis model.

6. For the case in which any one of the n scalar states of the single

axis model is inaccessible the following statements apply.

a. The minimum required order of the corresponding linear observer is

one.

b. The total number of first order observers that can be generated

,^	 is n.
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c. The E, F, G and T matrices associated with the first order

observer each contain a single row.

d. Each linear equation in the set of observer synthesis equations

expresses an element of the row matrix, T, in terms of d and the

corresponding element of the row matrix, F, of the first order

observer and elements of the A matrix of the single axis model.

e. Solution for the one synthesized scalar state of the single axis

model in terms of the one scalar state of the first order observer

and the n-1 accessible scalar states of the single axis model in-

volves no matrix inversions.

7. For the case in which any p of the n scalar states of the single axis

model are inaccessible the following statements apply where p = 2, 3,

..., n-2.

a. The minimum required order of the corresponding linear observer

is P.

b. The total number of observers of order p that can be generated is

given by:

C
n—	 n!

p P!(n—p)!

c. The E matrix is of dimensions px(n/2).

I	
d. The F and T matrices are each of dimensions pxn

e. The G matrix is of dimensions px(n—p)

J,	f. The observer synthesis equations consist of sets of p linear

equations of the same form with each equation within one of these

sets expressing an element in a given column of the T matrix in
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terms of the elements in the corresponding columns of the D and F

matrices of the observer and elements of the A matrix of the

single axis model.

g. Solution for each of the p synthesized scalar states of the single

axis model in terms of the p observer scalar states and Lhe n-p

accessible scalar states of the single axis model requires

inversion of a matrix of dimensions pxp.

A. For the case in which any n-1 of the n scalar states of the single

axis model are inaccessible the following statements apply.

a. The minimum required order of the corresponding linear observer is

n-1.

b. The total number of observers of order n-1 that can be generated

is n which is the same as for the first order observer.

Cc The F, matrix is of dimensions (n-1)x(n/2).

d. The F and T matrices each are of dimensions (n-1)xn.

e. The G matrix is of dimensions (n-1) x1 (vector of dimension n-1).

f. The observer synthesis equations consist of sets of n-i linear

equations of the same form with each equation within one of these

sets expressing an element in a given column of the T matrix in

terms of the given elements in the corresponding columns of the D

and F matrices of the observer and elements of the A matrix of the

single axis model.

I
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g. Solution for each of the n-1 synthesized scalar states of the

single axis model in terms of the n-1 observer scalar state of the

single axis model requires inversion of a matrix of dimensions

(n-1)x(n-1).

9. A multi—axis rigid body—flexible joint model of a flexible spacecraft

with weak coupling between its axes might be represented approximately

under certain conditions by the corresponding number of single axis

models.

5.2 RRCOPlMMATIONS

The following direc'ions are suggested for future study in the application

of attitude control to state variable models of flexible spacecraft for

which one or more scalar states are inaccessible.

1. The modular control techniques developed for the attitude control of

models of flexible spacecraft for which all scalar state variables are

accessible should be modified for application to the series of single

axis models and their associated reduced state linear observers

developed in the work treated in this report.

2. Selected combinations of single axis model and its associated linear

observer and modular attitude control system should be simulated on a

digital computer to support investigation of effects of changes in the

following single axis model and observer characteristics.

a. Ratios between the masses (rotational inertias) of bodies

comprising the single axis model

b. Magnitudes of spring and damping coefficients at the interfaces

between the rigid bodies of the single axis model
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c. Distribution and weighting of control torques applied to the rigid

bodies of the single axis model

d. Number and distribution of inaccessible scalar state variables of

the single axis model

e.	 Magnitudes of the elements of the D and E or F matrices of the re-

duced state observer

f.	 Presence of non-zero off-diagonal elements in the D matrix of the

reduced state observer

3.	 Effects of damping in single axis models upon the synthesis of the

corresponding reduced state linear observers should be evaluated.

4.	 The generation of reduced state observers to reconstruct irac^essible

scalar states of a model of a flexible spacecraft should be extended

to the three axis five body model of a prototype flexible spacecraft

developed earlier.	 This extension could be accomplished in the fol-

lowing sequence of steps.

a.	 Extend the four body single axis model to a five body single axis

model that could represent the axis of the linearized three axis

i
five body model that was found to be decoupled from the other two

axes of the model in earlier work.

1

b.	 Extend the generation of reduced state linear observers for the

four body single axis model with one or more inaccessible scalar

states to the corresponding five body model.

6
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c. Extend the generation of linear observers for a sequence of single

axis models treated in this report to a sequence of two axis mod-

els involving interaxial coupling culminating in a five body two

axis model that could represent the two coupled axes of the three

axis five body model of a prototype flexible spacecraft developed

previously.

5. The application of modular techniques to the attitude control of se-

lected combinations of a single axis model and its corresponding re-

duced state linear observer should be extended to the combination of

the single axis and two axis five body models representing the proto-

type flexible spacecraft and the corresponding reduced state observ-

ers.

6. The combination of single axis and two axis five body models and their

linear observers and modular attitude control systems should be simu-

lated on a digital computer.

7. Coefficients representing the sensitivity of the scalar states to pa-

rameters of the combination of single axis and two axis five body mod-

els and their linear observers and modular attitude control systems

should be developed.
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